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Magnons localised on surface steps: a theoretical model
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Abstract. We present the solution of the full magnetic problem arising from the absence of magnetic
translation symmetry in two dimensions due to an extended magnetic surface step on the surface boundary
of an insulating magnetic substrate. The calculation concerns in particular the spin fluctuation dynamics
of a magnetic atomic step in the surface of a ferromagnetic simple cubic lattice, the spin order being in the
direction normal to surface boundary. Only exchange interactions are considered between the spins in the
model. The theoretical approach determines the evanescent spin fluctuation field in the two dimensional
plane normal to the direction of the step edge. This field arises owing to the absence of magnetic translation
symmetry in this plane, and is completely independent of the form of the surface defect, underlying the
general character of the calculation. We show the existence of optical localised magnon modes propagating
along the step, their fields being evanescent in the plane normal to the step direction.

PACS. 75.70.Ak Magnetic properties of monolayers and thin films – 76.70.Hb Optically detected magnetic
resonance (ODMR) – 75.30.Et Exchange and superexchange interactions

1 Introduction

Interest in surfaces containing defects or nanostructures
has been motivated by the increasing need to refine the
study of substrate surfaces on the nanometric scale, and to
acquire knowledge of their associated magnetic, electronic
and mechanical properties for high technology applica-
tions. Questions concerning the thermodynamic stability
of vicinal surfaces and the modes of their kinetic growth
are also becoming important, which implies a need for a
better understanding of the role of surface nanostructures
and their particular properties.

There has been a growing interest, for example, in the
theoretical and experimental study of the vibrational dy-
namics of surface nanostructures [1–4], such as atomic
steps on crystal surfaces. It has been shown that these
nanostructures on the surface can give rise to new vibra-
tional modes localised in their neighbourhood [3,4], and
that these can scatter bulk and surface excitations.

Interest in magnetic surfaces and ultrathin films has
also increased in recent years. The study of magnons or
spin waves in ultrathin films has proved to very useful,
in particular, for determining magnetic anisotropy con-
stants [5,6], using Brillouin light scattering [7,8], that pro-
vides a tool to probe these magnetic excitations in ultra-
thin layers and also in dot-structured permalloy layers [9].
It is normally admitted now, however, that experiments
are performed on systems which lack perfectly flat atomic
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layers. A number of imperfections can exist including sur-
face reconstructions and step changes in thickness [10,11],
in these films. These imperfections may indeed contribute
to a number of physical effects, such as changes in the
thermal properties of the ultrathin film and the short life-
times of spin waves deduced from their observed large
linewidths.

The effects of localised imperfections on spin wave
propagation in very thin ferromagnetic films have been
examined, where these imperfections are assumed to be
materially confined to a few lattice sites, causing local
changes in anisotropy and exchange fields [12]. Another
work calculates, in the framework of a quasi-one-
dimensional model, the reflection and transmission coeffi-
cients for a spin wave which suffers diffraction on a step
like atomic discontinuity [13].

To our knowledge little if any attention, however, has
been assigned to the study of magnetic excitations lo-
calised in the neighbourhood of surface defects. The fre-
quencies of these localised modes may provide information
concerning the local magnetic anisotropy and exchange
interactions in the neighbourhood of these defects. Such
information will help us to understand more fully the
role that such imperfections or nanostructures may play
in surface phenomena, including interface instability, the
growth of magnetic substrates, and surface optical prop-
erties. These systems, further, are privileged examples of
a one dimensional magnetic system that breaks the mag-
netic translation symmetry in two dimensions.
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In this paper we will consider a simple model of a
magnetic step on a magnetically ordered surface, as in
Figure 1, and study the model in detail to investigate
the presence of magnetic excitations localised on the step.
Magnetic spin order is assumed to be in the direction of
the outward normal to the surface boundary.

For an extended uniform magnetic step in the surface,
the theoretical approach is to determine the evanescent
magnetic modes induced in the bulk and the surface ter-
race domains owing to the presence of the step as an
isolated nanostructure. These modes arise intrinsically be-
cause the surface and the step jointly break the transla-
tion symmetry of the magnetic order in two directions, one
normal to the surface boundary of the ordered substrate,
and the other in the plane of the surface boundary normal
to the direction of the step. The translation symmetry of
the magnetic order is preserved along only one direction,
namely parallel to the step.

Though numerically based methods are at hand to
treat the spin fluctuation dynamics of extended defects
at surfaces, this may be computationally heavy and is
nanostructure specific. The formalism presented here in
contrast is an analytical approach which is independent
of the geometry of the nanostructure in the surface. This
makes it easy to extend to a variety of real problems. It
can also give in a direct manner the real space Green’s
functions for the spin fluctuation dynamics of an isolated
nanostructure with the help of finite matrices.

The basic theory is presented in Section 2. In Section 3,
the spin fluctuation dynamics are presented for the bulk
and terrace domains, with a view to determining unique
solutions for the set of evanescent modes on a two dimen-
sional square lattice normal to the step direction. This
permits the construction of the evanescent field surround-
ing the step in a rigourous manner. The matching pro-
cedure is applied to the spin fluctuation dynamics of the
step domain, and the key theoretical results of this work
concerning the magnetic excitations localised on the step,
are given in Section 4. In Section 5 we present some salient
numerical results as well as the conclusions.

2 The model

We begin by introducing the notation used in this pa-
per and the definition of the step. Figure 1 shows the
schematic configuration of the magnetic step on the
surface of a simple cubic lattice. Note otherwise that it
is possible to imagine a case where the magnetic surface
boundary and magnetic step do not correspond to the ge-
ometric surface boundary and geometric step. On each
lattice site is attributed a magnetic ion and its spin vec-
tor variable S(n,s,m). The indices (n, s,m) ≡ p, are integer
numbers counting the sites respectively along the x, y, z
Cartesian directions of the cubic lattice. The system is as-
sumed to be an insulating ferromagnetic lattice with no
free electrons. The z-axis and the z spin component Spz
are assumed normal to the surface boundary, the y-axis
parallel to the step edge, and the x-axis normal to the step
edge.

Fig. 1. A schematic representation of an isolated surface step
that is infinite and symmetric along a given direction in the
surface of a simple cubic crystal. The magnetic step is equiv-
alent to this representation with equal spins on all the sites.
The magnetic interactions in a Heisenberg Hamiltonian be-
tween nearest neighbour sites is J and between next nearest
neighbours is J ′ = δJ . The z axis is normal to the surface
boundary, whereas the y and x axes are respectively parallel
and normal to the step edge.

The magnetic step on the surface is depicted via a rep-
resentation of a semi-infinite plane of ordered spins situ-
ated at m = 0, adjacent to an infinite plane of ordered
spins situated at m = 1. The x and z axes are indexed
respectively by the integers n and m. A reference cross
sectional cut of the magnetic step is taken geometrically
at the plane s = 0, and a top corner site is chosen as the
reference spin site at a(0, 0, 0). The translation symmetry
of the ordered spins for the system is broken in the x and
z directions, owing respectively to the presence of the step
and the surface. The y axis, in contrast, has translation
symmetry for the ordered spins and Bloch’s theorem may
be used along its direction. Three main domains may be
identified. The first consists of the bulk spin sites relatively
removed from the step, the second corresponds to surface
terrace sites also relatively removed from the step, referred
to as terrace sites, and the last domain corresponds to spin
sites belonging strictly to the step.

To illustrate the method that will be employed, con-
sider a one dimensional insulating linear atomic chain of
ordered spins, indexed with the variable p, and two nearest
neighbours. For the pth spin fluctuation variables σ±p (t)

σ±p (t) = σpx(t)± iσpy(t) (1)

where σpα(t) = Spα(t)−〈Spα〉, we may write the following
Bloch equation of motion

i~
dσ+

p (t)
dt

= −2J〈Spz〉
(
σ+
p−1(t)− σ+

p (t) + σ+
p+1(t)

)
(2)

where J is a magnetic exchange interaction between near-
est neighbour spins on the chain. Equation (2) is equiv-
alent to the equation of motion of this variable using a
Heisenberg Hamiltonian approach [14].

The z-axis, when referring to the spin component Spz ,
is a privileged direction for the spin order. Separating
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the time dependence of the σ+
p (t) variable, by putting

σ+
p (t) = σ+

p z
pe−iωt

where z under zp is a spatial phase factor along the di-
rection of the chain, equation (2) may be recast in the
form of

z2 + (Ω − 2)z + 1 = 0. (3)

At relatively low temperatures, in comparison with the
order-disorder transition temperature, the z component
of the spin may be approximated as 〈Sz〉 ≈ S, and we
may write Ω = ~ω/2JS, for the normalised energy of the
propagating magnetic excitation. Note in this case that z
in equation (3) corresponds to the phase factor of a wave
for a propagating mode (not to be confused with the z-
axis). An evanescent magnetic excitation is characterised,
in contrast, by a phase factor satisfying the requirement
that |z| < 1. It is worth noting that the roots of equa-
tion (3) determine when the mode is |z| < 1, and when it
is propagating |z| = 1.

The description given above for a one dimensional lin-
ear chain will be generalised to study the magnetic exci-
tations localised on the surface step, using the matching
method [15]. To do this, the first stage consists of deter-
mining unique solutions for the set of evanescent magnetic
modes, that determine in turn the magnetic evanescent
field on the two dimensional square lattice normal to the
step direction. This field is independent of the type of
the surface nanostructure considered, depending only on
the structure of the square lattice and on the nature of the
magnetic interactions proposed between its sites.

The second stage aims at matching the dynamics of the
step domain to the evanescent fluctuation spin field on the
two dimensional square lattice surrounding the step. This
generalization to two dimensions permits the calculation
of the energies of the magnetic excitations that are trav-
elling along the step but localised in the plane normal to
it, as in a waveguide.

Nearest neighbour magnetic exchange interactions J ,
are physically sufficient in a model Heisenberg Hamilto-
nian to depict the magnetic ground state, since these in-
teractions are related to the rapidly decaying electronic
wavefunction overlap integrals between the sites. For
mathematical interest, next nearest neighbour magnetic
interactions J ′ = δJ (δ � 1), are also considered at
first, although we drop this in the numerical work. The
model is consequently centred on the analysis of exchange-
dominated spin waves, neglecting for the time being other
forms of magnetic interactions. The exchange interactions
are considered to be the same everywhere in the magneti-
cally ordered system. In the present calculation the soften-
ing or hardening of the magnetic interactions on the step
and the terrace domains is not considered. These consid-
erations may be introduced in the model in a relatively
direct manner.

3 The dynamics of spin fluctuations

To determine unique solutions for the evanescent magnetic
modes in the two dimensional square lattice, we need to
calculate the fluctuation spin dynamics in the bulk as well
as in the surface terraces to the left and to the right of the
step, for the considered magnetic system.

3.1 Bulk spin fluctuation dynamics

The equations of motion of the spin fluctuation field for
any site (n, s,m) in the bulk domain removed from the
step, may be written, dropping the + sign on the σ vari-
ables for convenience, in the form

Ωσn,s,m = − (σn−1,s,m − 2σn,s,m + σn+1,s,m)
− (σn,s−1,m − 2σn,s,m + σn,s+1,m)
− (σn,s,m−1 − 2σn,s,m + σn,s,m+1)
− δ(σn−1,s,m+1 − 2σn,s,m + σn+1,s,m+1)
− δ(σn−1,s,m−1 − 2σn,s,m + σn+1,s,m−1)
− δ(σn,s−1,m+1 − 2σn,s,m + σn,s+1,m+1)
− δ(σn,s−1,m−1 − 2σn,s,m + σn,s+1,m−1)
− δ(σn−1,s−1,m − 2σn,s,m + σn+1,s−1,m)
− δ(σn−1,s+1,m − 2σn,s,m + σn+1,s+1,m). (4)

The generalised spatial phase factors along the x, y, z axes
are now referred to as z1, z2, z3. Since the step is consid-
ered infinite along the y-axis, we use Bloch’s theorem and
write for z2 its wave like representation, so that

σn,s±1,m = e±ik2aσn,s,m. (5)

The exp(±ik2a) in equation (5) are the phase factors of
propagating modes, where k2 is the magnon wavevector
along the y-axis, and a the interatomic distance between
nearest neighbour spins. We describe the evanescent field
of the spin fluctuation variables in the bulk of the square
lattice normal to the step direction and sufficiently re-
moved from it, by the spatial phase factors (z1, z−1

1 ) and
(z3, z−1

3 ), going from one site to its nearest neighbour in
either sense, along high symmetry axes of the cubic lat-
tice. The following relations may then generically define
these phase factors

σn±1,s,m = z±1 σn,s,m

σn,s,m±1 = z±3 σn,s,m. (6)

The substitutions from equations (5) and (6), in the equa-
tion of motion (4) of the field, fold to a reference site
(n, s,m) and yield for the non trivial solutions of the vari-
able σn,s,m, the following characteristic expression

δ
{
−12 + (z1 + z−1

1 )(z3 + z−1
3 ) + 2(z1 + z−1

1 + z3 + z−1
3 )

×cos(k2a)
}

+Ω−6+(z1+z−1
1 )+(z3+z−1

3 )+2 cos(k2a) = 0.
(7)
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As has been pointed out elsewhere for the case of pho-
nons [15], both couples (z1, z

−1
1 ) and (z3, z

−1
3 ) are solu-

tions in the magnetic problem owing to the hermitian
nature of the bulk spin fluctuation excitations. In prac-
tice only the evanescent solutions are however retained as
physically applicable.

The frequencies of the bulk spin wave modes are ob-
tained using equation (7), when z1 and z3 satisfy the prop-
agating conditions |z1| = 1 and |z3| = 1. For arbitrary
values of z1 and z3, however, equation (7) does not pro-
vide on its own the required unique solutions for either
of these two generic spatial phase factors. To obtain these
as a function of Ω and k2a, one needs also to analyse the
spin fluctuation dynamics for the surface terrace domains.

3.2 Surface spin fluctuation dynamics

It is necessary to specify in this instance the field equa-
tions for two types of sites, namely (−n, s, 0) and (n, s, 1),
for spins in the surface that are somewhat removed from
the step, and that are representative of respectively the
topmost layers of the left and the right terraces. The equa-
tions for the dynamics of the spin fluctuation variables for
terrace sites to the left of the step, (−n, s, 0), are

Ωσ−n,s,0 = −(σ−n−1,s,0 − 2σ−n,s,0 + σ−n+1,s,0)
− (σ−n,s−1,0 − 2σn,s,0 + σ−n,s+1,0)
− (σ−n,s,1 − 2σ−n,s,0)
− δ(σ−n−1,s,1 − 2σ−n,s,0 + σ−n+1,s,1)
− δ(σ−n,s−1,1 − 2σ−n,s,0 + σ−n,s+1,1)
− δ(σ−n−1,s−1,0 − 2σ−n,s,0 + σ−n+1,s−1,0)
− δ(σ−n−1,s+1,0 − 2σ−n,s,0 + σ−n+1,s+1,0).

(8)

For sites (n, s, 1), on the terrace surface to the right of the
step, one obtains the following equivalent equations

Ωσn,s,1 = −(σn−1,s,1 − 2σn,s,1 + σn+1,s,1)
− (σn,s−1,1 − 2σn,s,1 + σn,s+1,1)
− (σ−n,s,2 − σn,s,1)
− δ(σn−1,s,2 − 2σn,s,1 + σn+1,s,2)
− δ(σn,s−1,2 − 2σn,s,1 + σn,s+1,2)
− δ(σn−1,s−1,2 − 2σn,s,1 + σn+1,s−1,1)
− δ(σn−1,s+1,1 − 2σn,s,1 + σn+1,s+1,1). (9)

The above equations are next applied to two inequivalent
nearest neighbour spins in the terrace surface to the left of
the step, namely at (−n, 0, 0) and (−n, 0, 1), in the planes
respectively indexed by m = 0 and m = 1. The following
analysis applies equally to two such sites in the terrace
surface to the right of the step, i.e. (n, 0, 1) and (n, 0, 2).
This yields for the sites (−n, 0, 0) and (−n, 0, 1), the fol-
lowing system of coupled equations in the spin fluctuation

variables σ−n,0,0 and σ−n,0,1

[Ω − 5− 8δ + (z1 + z−1
1 )(1 + 2δ cos(k2a)

)
]σ−n,0,0

+ [1 + δ
(
2 cos(k2a) + (z1 + z−1

1 )]σ−n,0,1 = 0

[1 + δ
(
2 cos(k2a) + (z1 + z−1

1 )
)
]σ−n,0,0

+
[
Ω − 6− 12δ + 2 cos(k2a) + z3 + δ

{
(z1 + z−1

1 )

×
(
z3 + 2 cos(k2a) + 2z3 cos(k2a)

)}]
σ−n,0,1 = 0.

(10)

For a nontrivial solution of these coupled equations, the
characteristic determinant yields an expression in terms of
the phase factors z1 and z3, which is hermitian in z1 but
not in z3. Since z3 is a phase factor common to the surface
and to the bulk domains, and since it is hermitian in the
bulk, this property is retrieved for it in the surface domain
applying symmetry considerations in the framework of the
matching method [15]. As a consequence, we hence obtain
the final characteristic expression

[z2
3 − 1][δ + z1 + δz2

1 + 2δz1 cos(k2a)]

× [1 + z1(−5− 8δ +Ω + z1) + 2δ(1 + z2
1) cos(k2a)] = 0.

(11)

There are three multiplying parentheses in equation (11).
The first yields trivial solutions in z3 that are not evanes-
cent and are neglected. The two parentheses are indepen-
dent, and may be analysed separately to calculate the
phase factors z1.

A first set of solutions or roots, referred to as z1(±),
may be given from the third parenthesis as

z1(±) =

[5 + 8δ −Ω]± [(−5 + 8δ +Ω)2 − 4
(
1 + 2δ cos(k2a)

)
]1/2

2[1 + 2δ cos(k2a)]
·

(12)

Another set of solutions for z1, referred to as z1(1, 2), are
obtained from the second parenthesis, and they read

z1(1, 2) =

−[1 + 2δ cos(k2a)]± [{1 + 2δ cos(k2a)}2 − 4δ2]1/2

2δ
· (13)

Note that putting δ = 0, corresponds to neglecting next
nearest neighbour magnetic interactions on the lattice,
leading in this case to a certain simplification of the equa-
tions above. The two sets of solutions for z1, z1(±) and
z1(1, 2), however, do not have the same behaviour in the
limit as δ → 0. From equation (12) one obtains in this
limit that

Lt
δ→0

z1(±) =
[5−Ω]± [(−5 +Ω)2 − 4]1/2

2
· (14)

In contrast z1(1) diverges, whereas z1(2) is vanishing,
with δ

Lt
δ→0

z1(1) = −1
δ

Lt
δ→0

z1(2) = −δ sin2(k2a). (15)
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Fig. 2. The figure depicts the regions which are respectively
propagating and evanescent in the phase space (Ω, k2a), for δ =
0.2. The blackened region delimits propagating bulk magnon
modes. To its left and right are regions that contain evanescent
bulk magnetic modes.The left region contains the evanescent
z1(−) modes, and the right one the evanescent z1(+) modes.

The graphical solutions for z1(±), show that the Lt
δ→0

z1(−)

is evanescent for Ω ≤ 3, and that the Lt
δ→0

z1(+) is evanes-

cent for Ω ≥ 7. In the interval of energy, 3 < Ω < 7,
these phase factors satisfy |z1(±)| = 1, which condition
corresponds to propagating modes. The main effect of δ is
illustrated in Figure 2, in the phase space spanned by Ω
and k2a, for the particular case of δ = 0.2. The division
of this space into regions that correspond to propagating
and evanescent modes, is presented. The black region in
this figure corresponds to the propagating modes, whereas
the left region corresponds to the evanescent z1(−) modes,
and the right one to the evanescent z1(+) modes.

The set of nondegenerate solutions {z1(i)}, i = ±, 1, 2,
where |z1i| < 1, as a function of the energy Ω, the nor-
malised wavevector k2a along the step edge, and paramet-
rically as a function of δ, determine the evanescent modes
both to the right and to the left of the step edge. Given
this set of z1(i) solutions, equation (7) provides in turn the
set of nondegenerate solutions {z3(j)} that determine the
evanescent modes in the direction normal to the surface
boundary as one goes into the bulk.

Since the nondegenerate z1 modes may be obtained in
an unique manner, thanks to the analysis of the terrace
field equations, it is next possible to obtain the solutions
for the nondegenerate z3 modes using the bulkfield equa-
tions. In order to identify these solutions, equation (7) is
analysed in each situation when substituting for each of
z1(i) solutions.

As pointed out previously, the case of nearest neigh-
bour magnetic exchange interactions is sufficient to de-
pict the ground state energy in a Heisenberg Hamiltonian,
since these interactions are related to the rapidly decaying
electronic wavefunction overlap integrals between crystal-
lographic sites. The numerical work shall hence be limited
to this case, for which the z1(1) solutions diverge and are
not physical, whereas z1(2) is vanishing and is of no inter-
est. The model remains relatively simple, since only one

couple at a time of the z1 and z3 modes, in any given win-
dow of the phase space (Ω, k2a), are sufficient to determine
the evanescent magnetic field surrounding the step.The
following discussion is consequently confined to consider-
ing only the two solutions z1(±), for which the following
results are derived

z3

(
±, z1(−)

)
=

A±
[
(A+B)2[(1− 2K)2 − 4] +B(1− 2K)− 2AK

]1/2
2(A+B)

(16)

z3

(
±, z1(+)

)
=

∓
[
(A+B)2[(1− 2K)2 − 4] + (B −A)(1− 2K)

]1/2
2(B −A)

(17)

where A = Ω − 5, B = [(Ω − 7)(Ω − 3)]1/2, and K =
cos(k2a). Note that the index j now identifies four possible
z3(j) modes and refers to the four couplets, j = ±, z1(±).

The following results for the domains of evanescence
of the z3 modes when δ = 0, were found numerically. For
the evanescent z1(−) mode, the z3(+) is evanescent in the
phase space window defined by the intervals 0 ≤ Ω ≤ 5,
and 2 ≤ k2a ≤ π, whereas the z3(−) mode is evanescent
over the same interval of the Brillouin zone but for higher
energies Ω > 5. In contrast, substituting for the evanes-
cent z1(+) mode in equation (7), the z3(+) and the z3(−)
modes persist but interchange their domains.

This then completes the description of the nondegen-
erate evanescent modes in the bulk and the surface terrace
domains, and permits the construction of the evanescent
field surrounding the step domain.

4 Localised magnon modes on the step

The step domain includes, for a plane cut at s = 0, the
following sites, a(0, 0, 0), b(0, 0, 1), c(0, 0, 2), d(−1, 0, 0),
e(−1, 0, 1), f(1, 0, 1), and g(1, 0, 2). The choice of the
stepdomain should preserve the intrinsic asymmetry and
must contain a sufficient number of sites for complete-
ness. When studying the spin fluctuation dynamics of this
domain, it may be divided, furthermore, into an elemen-
tary domain {a, b, c, d, f} of irreducible spin sites that
are strictly the intersection of the magnetic step with the
magnetic boundary, and another that consists of neigh-
bouring sites present in the surrounding bulk and terrace
domains. Note that in our model, the magnetic surface
boundary and its step are identical to the lattice surface
and its step.

To solve for the magnetic excitations localised on the
step, the next stage aims at matching the spin fluctua-
tion dynamics of the step domain to the evanescent field
surrounding the step.

For sites somewhat removed from the step yet on the
terrace surfaces, to the right and left of the step, the
fluctuation spin variables may be represented in terms
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of the evanescent field as follows. For spins on the sur-
face layer of the left terrace, up from the step, identified
by the indices −n < −1, s = 0, m = 0, we may put

σ−n,0,0 = zn−1
1 σ−1,0,0. (18)

Further, for spins on the surface layer of the right terrace,
down from the step, identified by the indices n > 1, s = 0,
m = 1, the equivalent relation is

σn,0,0 = zn−1
1 σ1,0,0. (19)

The two other relations for embedded sites surrounding
the step in the plane s = 0, are the following. For n > 0,
m ≥ 1

σ−n,0,m = zn1 z
m
3 R

(−) + 0R(+) (20)

whereas for n > 0, m ≥ 2, it is

σn,0,m = 0R(−) + zn1 z
m
3 R

(+). (21)

In this representationR(−) and R(+) depict basis unit vec-
tors for projecting the evanescent field in respectively the
quarter-infinite half spaces to the left and to the right of
the magnetic step. This theoretical representation allows
one to treat both the localised modes and the diffraction
problems by generalising the framework of the matching
method from one to two dimensions. In this work only the
localised modes are treated. Note that the generic phase
factors z1 and z3 in equations (18–21) have explicitly dif-
fering forms depending on the choice of the (Ω, k2a) re-
gion for the purpose of the numerical calculation, as may
be seen in Figure 2.

Using the above matching procedure in two dimen-
sions it is finally possible to recast the equations for the
dynamics of the spin fluctuation variables in the step do-
main, employing equations (18–21), in the form of a square
matrix M(l, l′) acting on a column vector V T

M(l, l′)V T = 0 (22)

where

V T = [σa, σb, σc, σd, σd, σf , R(−), R(+)]. (23)

The non vanishing matrix elements of M(l, l′) are given
in general, for δ = 0, by the following expressions

M(1, 1) = Ω − 4 + 2 cos(k2a)
M(1, 2) = M(1, 4) = M(3, 1) = M(3, 3) = M(3, 5)

= M(4, 2) = M(5, 2) = 1
M(2, 4) = M(4, 5) = Ω − 5 + 2 cos(k2a) + z1

M(2, 6) = M(3, 6) = z1z3

M(3, 2) = M(5, 4) = Ω − 6 + 2 cos(k2a)

M(4, 7) = M(6, 7) = z1z
2
3

M(5, 6) = z1z3 + z1z
2
3 + z3z

2
1

M(6, 5) = M(7, 4) = z1[Ω − 5 + 2 cos(k2a) + z1] + 1

M(6, 7) = z1z
2
3

M(7, 6) = z3z
2
1. (24)

Fig. 3. The curve depicts the numerically calculated dispersion
relation for the magnons localised on the step, in the region
Ω ≥ 7 and 2.1 ≤ k2a ≤ π of the phase space.

To obtain non trivial solutions for the components of the
vector V T, the determinant of the matrix M(l, l′) must
vanish

detM(l, l′) = 0. (25)

The determinant contains the specific expressions for the
factors z1 and z2, which vary as a function of the selected
(Ω, k2a) region. Equation (25) yields in turn the solutions
for the magnetic excitations localised in the plane normal
to the step direction.

5 Numerical results and conclusions

The only regions where the couple z1 and z2 are simulta-
neously evanescent are in those determined independently
byΩ ≤ 3 and Ω ≥ 7, and by the interval 2.1 ≤ k2a ≤ π. In
other regions at least one of these modes is propagating,
so that, in the search for magnetic modes that are strictly
localised on the step edge, we neglect these secondary re-
gions for the time being as being leaky.

The determinant of equation (25) leads to a non lin-
ear expression in Ω and k2a. Its numerical solution, in the
form of a set of points Ω versus k2a, gives the dispersion
curves of a special type of magnetic excitations. These
dispersion curves depict magnons propagating along the
step edge that are however effectively localised in the sense
that their spin fluctuation field is evanescent in the plane
normal to the step direction. The amplitude of the lo-
calised spin wave field in this plane, diminishes as one
goes from one site to another further and further away
from the step into the surrounding surface and bulk do-
mains. The step plays hence the role of a wave guide for
this type of magnon.

The numerical calculations yield one optical branch
in the high energy region (Ω ≥ 7, 2.1 ≤ k2a ≤ π),
for the dispersion curves of the spin waves localised
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on the step, as is presented in Figure 3. To our knowledge
no experimental data is available at present to compare
our results with.

In contrast, there is experimental evidence that
demonstrates localised phonons on the step edges of a
vicinal Ni(977) surface, observed using helium atom scat-
tering [3]. Together with the theoretical work concerning
these step localised phonons [4], this provides a realis-
tic feel for such localised dynamic excitations. Since the
phonon model, as well as the spin wave model presented
here, share a common theoretical approach in the har-
monic approximation, it seems to us reasonable to sup-
pose that the calculation presented here is realistic and
predicts step edge localised spin waves. These may be ob-
served by appropriate experimental techniques, such as
Brillouin light scattering and polarised HAS.

To our knowledge little if any attention has been as-
signed to the study of magnetic excitations localised in
the neighbourhood of surface defects. The frequencies of
these localised modes may provide information concerning
the local magnetic anisotropy and exchange interactions in
the neighbourhood of such defects, and will contribute to
understand more fully the role that they may play in sur-
face phenomena such as interface instability, the growth of
magnetic substrates, and surface optical properties. These
systems, further, are privileged examples of a one dimen-
sional magnetic system that breaks the magnetic transla-
tion symmetry in two dimensions.

We emphasize that the present model is simple inso-
far that it considers only magnetic exchange interactions
between the ordered spins, yielding hence the exchange-
dominated step localised spin waves. It is quite possible
that other kinds of magnetic interactions play also a role
in the behaviour and frequencies of the magnons localised
on the step, in which case these interactions should be
considered in the equations of motion of the spin fluctua-
tion field. As has been pointed out previously, it is feasible
to introduce other forms of magnetic interactions in the
present model in a relatively direct manner.

The presented model may be generalised to treat the
spin fluctuation dynamics of other extended surface im-
perfections or nanostructures, provided they preserve the
translation symmetry of the ordered spins along a direc-
tion in the surface boundary.

The authors would like to acknowledge very useful discussions
and encouragement from C. Tannous.
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